Масъала. Решаҳои муодилаи квадратиро ёбед:
$$-3x^2+6x−3=0.$$
Ҳал. Намуди умумии муодилаи квадрати чунин аст:
$$ax^2+bx+c=0,$$
ки дар ин ҷо мо аввал дискриминанти муодиларо ҳисоб мекунем ва баъдан решаҳои онро меёбем:
\(D=b^2-4 \cdot a \cdot c\) - дискриминанти   муодила.
Агар дискриминанти муодила D>0 бошад, он гоҳ муодила 2-то решаи ҳақиқӣ дорад:
$$x_1=\frac{-b-\sqrt{D}}{2 \cdot a},$$
$$x_2=\frac{-b+\sqrt{D}}{2 \cdot a}.$$
\(x_1\) ва \(x_2\) - решаҳои муодила дар ҳолати D>0 будан.
Агар дискриминанти муодила D<0 бошад, он гоҳ муодила решаи ҳақиқӣ надорад.
Агар дискриминанти муодила D=0 бошад, он гоҳ муодила 1-то решаи ҳақиқӣ дорад.
$$x=\frac{-b}{2 \cdot a}.$$
Муодилаи зеринро ҳал мекунем:
$$-3x^2+6x−3=0,$$
ки дар инҷо
\[a=-3; b=6; c=-3\]
\[D=b^2-4\cdot a\cdot c=6^2-4\cdot(-3)\cdot(-3)=36-36=0, D=0.\]
\[x=\frac{-b}{2\cdot a}=\frac{-6}{2\cdot(-3)}=\frac{-6}{-6}=1.\]
Ҷавоб: \(x=1\).